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Abstract

We look at properties of univariate and bivariate distributions, specifically
those involving generating functions. Using these properties we arrive at
the bivariate Poisson distribution which we use to simulate football matches.
We consider the home effect and the problems involved when estimating
our parameters. We view two methods for estimating these parameters and
use them to simulate football matches. We simulate the 2009/2010 Pre-
mier League, looking at the final results for the season, how the home effect
influences the model and how teams compare and differ. We finish by consid-
ering how others simulate football matches, specifically the computer games
industry.
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Chapter 1

Introduction

In recent times there has been increasing development of the Internet, mean-
ing nearly everyone now has web access. These developments have led to an
increase in the betting market, with companies expanding onto the Internet.
This new technology means spread betting companies can now offer a real
time market which can update its odds quickly to match changing scenarios
in sport. Football has arguably seen the greatest increase of interest, with
punters able to bet on results, goal scorers, the times of goals etc. With all
this money been bet on football the natural question that arises is, “Can we
use mathematics to predict football matches?”

We begin by looking at the number of goals scored in a single match in the
English Premier League.
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Figure 1.1: Number of goals in a Premier League match.
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Figure (1.1) shows the number of goals scored by both teams during a game
in the Premier League. The mean number of goals scored in a game is 2.604.
The shape of the histogram suggests that a good way to start would be by
modeling the goals using a Poisson distribution with mean 2.604, indicated
by the red line on the histogram. Using this distribution we consider the
probability of goals scored in the Sunderland, Liverpool game, (20th March
2011), and compare it with the odds offered by bet365.

Total Goals 0 1 2 3 4
Pois(2.604) 0.074 0.193 0.251 0.218 0.142
bet365 odds 0.12 0.24 0.282 0.221 0.137

If the probabilities from the Pois(2.604) are greater than the odds offered we
would bet as we believe the event to be more likely than the bookmakers,
and as such we should get good odds. Here the probability of 4 goals in
the game is slightly greater than the odds offered so we may be tempted
to bet. The probabilities are reasonably close to those offered by bet365;
this suggests that this model, albeit basic, captures the distribution of goals
and is a reasonable starting point for predicting football matches. However
we are more interested in being able to predict the number of goals for an
individual team. Let us now consider the average number of goals scored by
the home team and the average number scored by the away team.

Histogram of Premier League Home Goals
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Histogram of Premier League Away Goals
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Figure 1.2: Home and away goals in the Premier League.

The shape of the histograms in Figure (1.2) again suggest a Poisson distri-
bution. The mean of goals scored by the home team is 1.513 and the mean
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of away goals is 1.091. The corresponding Poisson distributions are shown
on the histograms by the red line. Thus, can a Poisson distribution for the
home goals and a Poisson distribution for the away goals more accurately
allow us to predict football matches?

Sunderland Goals (Home) 0 1 2 3
Pois(1.513) 0.220 0.333 0.252 0.127
bet365 odds 0.368 0.283 0.243 0.106

Liverpool Goals (Away) a 0 1 2 3
Pois(1.091) 0.336 0.366 0.2 0.073
bet365 odds 0.312 0.365 0.222 0.101

These probabilities are again close to the odds offered. Using these distribu-
tions we may be tempted to bet on Sunderland scoring 1 goal as the proba-
bilty is higher than the odds offered. However in this case the probabilities
are slightly more erratic, i.e. the probability of Sunderland scoring 0 goals is
not that accurate. This is because teams have different levels of attack and
defence; we presume Chelsea (1st in the 2009/2010 Premier League) score
more goals than Portsmouth (20th) for example. This leads to the question,
“How do we assign these levels of attack and defence?”

Brian Clough once said “It only takes a second to score a goal,” and when
Ron Atkinson was asked for his feelings on an upcoming match he responded
with, “Well, either side could win it, or it could be a draw.” Over the
following chapters we will try to predict a sport that has been described on
many occasions as unpredictable. We will look at match results, how a team
attacks and defends, a team’s form and the question of the home effect. We
will also consider how others have predicted football matches.



Chapter 2

Properties of Univariate and

Bivariate Distributions

In this chapter we will look at some of the properties involved with univariate
distributions, specifically those involving generating functions. We will then
extend these to the bivariate case using examples from the bivariate Binomial
distribution. We will use this distribution to derive the bivariate Poisson
distribution, which we will be using to predict football matches.

2.1 The Univariate Case

2.1.1 Probability Generating Functions

For the univariate case, whereX is a random variate taking values on a subset
of the non-negative integers 0, 1..., p(x) is the probability mass function of
X and the Probability Generating Function (PGF) is defined by:

GX(t) = E[tX ] =
∑

x

p(x)tx. (2.1)

If X and Y have identical PGFs, i.e. GX(t) = GY (t) then p(x) = p(y). That
is to say that identical PGFs imply thatX and Y have identical distributions.

When considering PGFs there are some important properties to consider, for
example:

• GX(1) = 1.

7
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• E[X] = G
′

X(1).

• V ar(X) = G
′′

X(1) +G
′

X(1)− [G
′

X(1)]
2.

• If A(t) is known to be a PGF of X then P (X = k) can be obtained by
differentiating A(t) k times w.r.t t and setting t = 0.

• If the PGF of Y is h(x) then

GY (t) = Gh(x)(t) = E[th(x)] =
∑

x

p(x)th(x).

Given the last property if h(x) is relatively simple then it may be possible
to express GY (t) in terms of GX(t). For example if Y = a+ bx then

GY (t) = E[ta+bX ] = taE[(tb)X ] = taGX(t
b).

We will now consider examples using the univariate Poisson distribution and
the univariate Binomial distribution.

If X ∼ Pois(λ), with

Pr(X = x) =
λxe−λ

x!
, x = 0, 1, 2...

then the PGF is
GX(t) = exp (λ(t− 1)).

Thus

G
′

X(t) = λ exp (λ(t− 1)),

G
′′

X(t) = λ2 exp (λ(t− 1)).

Hence

E[X] = λ exp (0)

= λ,

V ar(X) = λ2 exp (0) + λ exp (0)− (λ exp (0))2

= λ2 + λ− λ2

= λ.

Thus if X ∼ Pois(λ), E[X] = V ar(X) = λ, which is what we expect given
our knowledge of the Poisson distribution.
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For X ∼ Bin(n, p), we have

Pr(X = x) =

(

n

x

)

px(1− p)n−x, x = 0, 1, 2, ..., n,

with
GX(t) = ((1− p) + pt)n.

Thus

G
′

X(t) = np((1− p) + pt)n−1,

G
′′

X(t) = n(n− 1)p2((1− p) + pt)n−2.

Hence

E[X] = np((1− p) + p)n−1

= np,

V ar(X) = n(n− 1)p2 + np− (np)2

= np(1− p).

Thus if X ∼ Bin(n, p), E[X] = np and V ar(X) = np(1 − p). This again
matches our expectations.

2.1.2 Moment Generating Functions

For the random variable X, the Moment Generating Function (MGF) is
defined as:

MX(t) = E[etX ]. (2.2)

The MGF of a random variable is an alternative form of its probability distri-
bution. Equation (2.2) allows us to find all the moments of the distribution.
Recall that the series expansion of

etX = 1 + tX +
(tX)2

2!
+

(tX)3

3!
+ ....

From this it follows that

MX(t) = 1 +m1t+
m2t

2

2!
+

m3t
3

3!
+ ...

where mi is the ith moment. We can calculate mi, i = 1, 2, ... by differenti-
ating MX(t) i times and setting t = 0.

As in the case of the PGF there are a collection of simple results to ease
calculations. For example:
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• MX(0) = 1.

• E[X] = M
′

X(0).

• V ar(X) = M
′′

X(0)− [M
′

X(0)]
2.

• Given X1, X2, ..., Xn are a sequence of independent random variables
where Sn =

∑n

i=1 ciXi (ci’s are constants) then

MSn
(t) = MX1

(c1t)MX2
(c2t)...MXn

(cnt).

• If X and Y are independent then

MX+Y (t) = E[e(X+Y )t] = E[eXteY t] = MX(t)MY (t).

To demonstrate these properties we again consider the univariate Poisson as
described above. It has MGF

MX(t) = exp
(

λ
(

et − 1
))

.

Thus

M
′

X(t) = λet exp
(

λ
(

et − 1
))

,

M
′′

X(t) = λet exp
(

λ
(

et − 1
))

+ λ2e2t exp
(

λ
(

e0 − 1
))

.

Hence

E[X] = λe0 exp
(

λ
(

e0 − 1
))

= λ,

V ar(X) = λ+ λ2 − (λ)2

= λ.

As in the case of the PGF these results are as expected. We now move to
consider a continuous distribution, X ∼ N(µ, σ2). The MGF is given by

MX(t) = exp

(

µt+
1

2
σ2t2

)

.

Thus

M
′

X(t) = (µ+ σ2t) exp

(

µt+
1

2
σ2t2

)

,

M
′′

X(t) = σ2 exp

(

µt+
1

2
σ2t2

)

+ (µ+ σ2t)2 exp

(

µt+
1

2
σ2t2

)

.
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Hence

E[X] = µ exp (0)

= µ,

V ar(X) = σ2 + µ2 − (µ)2

= σ2.

These results are what we expect given our knowledge of the Normal distri-
bution.

2.1.3 Cumulant Generating Functions

The Cumulant Generating Function (CGF) is the log of the MGF. Note that
if 2 distributions have identical moments then they will also have identical
cumulants. The CGF is defined as:

KX(t) = log (MX(t)) =
∑

x

tx

x!
κx. (2.3)

Here κx represent the cummulants of X and are:

• κ1 = E[X].

• κ2 = E[(X − E[X])2] = V ar(X).

• κ3 = E[(X − E[X])3].

• κ4 = E[(X − E[X])4]− 3[V ar(X)]2.

For the Poisson distribution

KX(t) = log
{

exp
(

λ
(

et − 1
))}

= λ
(

et − 1
)

= λ

(

t+
t2

2!
+

t3

3!
+ ...

)

.

Therefore all the cummulants of the Poisson distribution are given by λ.

For the Normal distribution

KX(t) = log

{

exp

(

µt+
1

2
σ2t2

)}

= µt+
1

2
σ2t2.
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Hence κ1 = µ and κ2 = σ2, the mean and variance respectively. Again
for the Poisson distribution and the Normal distribution these results are as
expected.

2.2 The Bivariate Case

Taking the functions defined above it is now a natural progression to expand
the PGF, MGF and CGF to encompass bivariate data.

2.2.1 Bivariate PGF

Given a pair of discrete random variables, X and Y , with probability function
p(x, y) we can define the PGF as E[tX1 t

Y
2 ]. Hence:

GXY (t1, t2) =
∑

x,y

tx1t
y
2p(x, y). (2.4)

From equation(2.4) we can determine the probability function. This is achieved
by using the fact that the PGF can be differentiated continuously w.r.t t1
and t2, and then evaluated at (0, 0):

p(x, y) =
1

x!

1

y!

∂x+y

∂tx1∂t
y
2

GXY (t1, t2)|t1=0,t2=0.

2.2.2 Bivariate MGF

As in the case of the bivariate PGF, the bivariate MGF is an extension of
the univariate case. If we take X and Y as defined above in section 2.2.1,
the MGF is E[et1X+t2Y ]. Thus,

MXY (t1, t2) =
∑

x,y

et1x+t2yp(x, y). (2.5)

It is worth noting that this definition of the MGF assumes that all the mo-
ments do exist. We define the joint moments µ

′

r,s as E[XrY s], by expanding
the exponentials equation (2.5) becomes

MXY (t1, t2) =
∑

r,s

tr1
r!

ts2
s!
µ

′

r,s.
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Here µ
′

r,s can also be defined as the mixed partial derivative

∂r+s

∂tr1∂t
s
2

MXY (t1, t2)|t1=0,t2=0.

From the definitions of the PGF and MGF (2.4, 2.5) the following relationship
can be assumed:

MXY (t1, t2) = GXY (e
t1 , et2).

2.2.3 Bivariate CGF

Given the definition above for the CGF in the univariate case we can define
the bivariate CGF as:

KXY (t1, t2) = log (M(t1, t2)) =
∑

r

∑

s

tr1
r!

ts2
s!
κr,s.

Where κr,s is the cumulant of order (r,s).

2.2.4 Marginal Distributions

It may be of interest to observe the behaviour of the variables independently
of each other. For this we use the marginal distributions. Taking the prob-
ability function of X and Y as p(x, y), the marginal probability function for
x is

g(x) =
∑

y

p(x, y);

and the marginal probability function for y is

h(y) =
∑

x

p(x, y).

This gives the marginal PGF for x as:

GX(t) =
∑

x

g(x)tx

=
∑

x

tx
∑

y

p(x, y)

=
∑

x

∑

y

p(x, y)tx = GX(t, 1). (2.6)
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Similarly the marginal PGF for y is given by GY (1, t).

We can work out the marginal MGFs using a similar method. These are seen
to be:

MX(t) = M(t, 0),

and
MY (t) = M(0, t). (2.7)

2.2.5 Convolutions

Bivariate distributions can also be generated using convolutions of random
variables. Take

X = X1 +X3

and
Y = X2 +X3

with X1, X2, X3 independently distributed. Thus X and Y are jointly dis-
tributed. Now taking PGFs as defined above, the joint PGF of (X, Y ) is
given by

GXY (t1, t2) = GX1(t1)GX2(t2)GX3(t1t2). (2.8)

The joint MGF of (X, Y ) is similarly given by

MXY (t1, t2) = MX1(t1)MX2(t2)MX3(t1 + t2). (2.9)

2.3 The Bivariate Binomial distribution

As in the univariate case, the bivariate Binomial distribution is a continuation
of the Bernoulli distribution. One bivariate Bernoulli trial measures two
random variables, both with outcomes 0 and 1. Each trial therefore has four
possible outcomes, (0, 0), (0, 1), (1, 0) and (1, 1), where the probabilities of
the outcomes remain constant, and the trials are independent of each other.

Consider a sequence of n bivariate Bernoulli trails, measuring the two random
variables I1 and I2 which can take the values 0 or 1. We define the probability
of I1 = a and I2 = b for a = 0, 1 and b = 0, 1 as

P{I1 = a, I2 = b} = pab.

Taking

X =
n
∑

i=1

I1i,
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and

Y =
n
∑

i=1

I2i.

The PGF of X,Y is:

GXY (t1, t2)

= E[tX1 t
Y
2 ]

= {E[tI11 t
I2
2 ]}

n

= (t1t2p11 + t1p10 + t2p01 + p00)
n

= (1 + p1+(t1 − 1) + p+1(t2 − 1) + p11(t1 − 1)(t2 − 1))n. (2.10)

Where p1+ is the sum over b when a = 1, p+1 is the sum over a when b = 1,
and p11 is the probability that a = 1 and b = 1.

Using equation (2.6) the marginal PGF for X is

GX(t) = (1 + p1+(t− 1) + p+1(1− 1) + p11(t1 − 1)(1− 1))n

= (p0+ + p1+t)
n.

Similarly the marginal PGF for Y is

GY (t) = (p+0 + p+1t)
n.

Since GX(t) has the same form as the PGF of a Bin(n, p) we can state that

X ∼ Bin(n, p1+);

similarly
Y ∼ Bin(n, p+1).

We can see that the bivariate Binomial distribution is just a continuation of
the Binomial distribution to higher dimensions. In the univariate case we are
considering the number of successes against the number of failures, whereas
in the bivariate case we are interested in how many times the events X and
Y have occurred.

2.4 The Bivariate Poisson distribution

Just as in the univariate case the bivariate Poisson distribution can be derived
by taking the limit of the bivariate Binomial distribution which has PGF



CHAPTER 2. UNIVARIATE AND BIVARIATE DISTRIBUTIONS 16

(2.10). We take λ1, λ2 and λ3 to be positive constants independent of n and
that

p1+ =
λ1

n
,

p+1 =
λ2

n

and

p11 =
λ3

n
.

Substituting into equation (2.10) gives the PGF as:

Gn(t1, t2) =

(

1 +
λ1(t1 − 1)

n
+

λ2(t2 − 1)

n
+

λ3(t1 − 1)(t2 − 1)

n

)n

. (2.11)

Taking the limit of equation (2.11) as n → ∞ and using the result

lim
n→∞

(

1 +
λ

n

)n

∼ exp (λ),

we get

GXY (t1, t2) = exp (λ1(t1 − 1) + λ2(t2 − 1) + λ3(t1 − 1)(t2 − 1)). (2.12)

Rearranging equation (2.12) and reparameterising gives:

GXY (t1, t2) = exp (λ1(t1 − 1) + λ2(t2 − 1) + λ3(t1t2 − 1)). (2.13)

This is the PGF of the bivariate Poisson distribution with parameters λ1, λ2

and λ3 for two random variables X and Y . Comparing this with the PGF
for the univariate Poisson distribution, which is given by

GX(t) = exp (λ(t− 1));

we see that equation (2.13) is an extension of the univariate Poisson distri-
bution, just as in the case of the Binomial distribution. Here the univariate
case considers λ and the bivariate case considers λ1, λ2 and λ3.

Using equation (2.6) on (2.13) gives the marginal PGF for X as

GX(t) = GX(t, 1)

= exp (λ1(t− 1) + λ2(1− 1) + λ3(t− 1))

= exp ((λ1 + λ3)(t− 1)). (2.14)
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Similarly the marginal PGF for Y is given by

GY (t) = exp ((λ2 + λ3)(t− 1)).

Hence the marginal distribution for X is

X ∼ Po(λ1 + λ3), (2.15)

and the marginal distribution for Y is

Y ∼ Po(λ2 + λ3). (2.16)

Expanding equation (2.13) in powers of t1 and t2 gives the joint probability
function

GXY (t1, t2) = e−(λ1+λ2+λ3)

∞
∑

i=0

λi
1t

i
1

i!

∞
∑

j=0

λ
j
2t

j
2

j!

∞
∑

k=0

λk
3t

k
1t

k
2

k!
. (2.17)

Equation (2.17) indicates (through the summations) why the marginal dis-
tributions of X and Y are Poisson distributions.

We will conclude this chapter by considering some examples involving the
bivariate Poisson distribution. Firstly consider a case when λ1 = 2, λ2 = 1
and λ3 = 1. From the above we can see that this gives a PGF:

GXY (t1, t2) = exp (2(t1 − 1) + (t2 − 1) + (t1t2 − 1))

= exp (2t1 + t2 + t1t2 − 6).

The marginal distributions are given by

X ∼ Po(3)

and
Y ∼ Po(2).

Using the R package “Bivpois” which was developed to analyze the bivariate
Poisson distribution, we are able to calculate probabilities for the distribution
using the commands bivpois.table and pbivpois. The package has been
used for general simulation, to model the demand for health care in Australia,
to model water polo games and to model football matches; the last case was
specifically used to model the 1991-1992 Italian Seria A season. Here we will
use the command bivpois.table to analyze the distribution.

> bivpois.table(4,4,lambda=c(2,1,1))
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0.018 0.018 0.009 0.003 0.001
0.037 0.055 0.037 0.015 0.005
0.037 0.073 0.064 0.034 0.012
0.024 0.061 0.067 0.044 0.019
0.012 0.037 0.049 0.039 0.021

Element (i, j) of the above matrix represents the Pr(X = i− 1, Y = j − 1).
From this we can see that X = 2, Y = 1 (element (3,2)) has the highest
probability which is what we expect; there is also more probability for higher
values ofX than there are for higher values of Y and the probability is mainly
concentrated around the top left corner of the matrix.

We now vary the value of λ3 which represents the covariance between X and
Y ; keeping λ1 and λ2 as before and setting λ3 = 3 we see:

> bivpois.table(6,6,lambda=c(2,1,3))

0.002 0.002 0.001 0.000 0.000 0.000 0.000
0.005 0.012 0.010 0.005 0.001 0.000 0.000
0.005 0.020 0.029 0.019 0.008 0.003 0.001
0.003 0.018 0.039 0.041 0.025 0.010 0.003
0.002 0.012 0.033 0.050 0.044 0.024 0.009
0.001 0.006 0.020 0.040 0.047 0.036 0.018
0.000 0.002 0.010 0.023 0.036 0.036 0.024

Here we see that the probabilities have been severely reduced from the case
above, this is because as we increase λ3 we expect to see higher values of X
and Y . However we still keep most of the traits described above with more
probability for higher values of X than higher values of Y . We now see that
most of the probability is concentrated in the bottom right corner and again
this is down to the expectation of higher values.

Finally if we set λ3 = 0 we get:

> bivpois.table(4,4,lambda=c(2,1,0))

0.050 0.050 0.025 0.008 0.002
0.100 0.100 0.050 0.017 0.004
0.100 0.100 0.050 0.017 0.004
0.066 0.066 0.033 0.011 0.003
0.033 0.033 0.017 0.006 0.001
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It is notable here that the probabilities are greater than in the other cases
although most of the density is still found in the top left corner of the ma-
trix. Setting λ3 = 0 means that there is no covariance between X and Y ;
this model is often referred to as the double Poisson distribution, which is
just the sum of independent Poisson distributions. From our knowledge of
independent Poisson distributions we expect an outcome of 3 to occur here;
this can happen in any combination, e.g. (X = 3, Y = 0), (X = 2, Y = 1),
etc. Looking at the matrix we see that the higher probabilities are around
these combinations, with the outcomes involving a higher X having a slightly
greater probability than those with a larger Y .



Chapter 3

Simulating Football Matches

We now look at how the theory of chapter 2 can be used to predict football
matches and address some of the problems we face when simulating results.
We will be using regression to simulate results and we begin by looking at
some of the aspects of regression.

3.1 Regression

Regression is used to model relationships between random variables. In its
simplest form the relationship is a straight line and we model it using linear
regression. By using regression we aim to get estimates for these variables
using data and then use the estimates to predict future events. We will be
estimating a teams attack and defence to predict their goals and the goals of
their opponents, from which we can determine who would win the game.

Most estimates in regression are obtained by the method of least squares. To
estimate the parameters for a simple linear model

Yi = β0 + β1xi + ǫi, i = 1...n

where ǫi ∼ N(0, σ2) we look to minimise the residual sum of squares

n
∑

i=1

(yi − β0 − β1xi)
2. (3.1)

All the computations involved use a few summary statistics from the data
meaning that for simple regression we can easily calculate estimates of the
variables.

20
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We can extend this simple case to include several predictors, this is known
as multiple regression.

Yi = β0 + β1x1 + β2x2 + ...+ βpxp + ǫi, i = 1...n

where ǫi ∼ N(0, σ2) and Cov(ǫi, ǫj) = 0 for all i 6= j. This equation can be
written in matrix form, suppose that we have n observations, then

~Y = X~β + ~ǫ

where

X =









1 x11 x12 ... x1p

1 x21 x22 ... x2p

1 xn1 xn2 ... xnp









=









~x1
T

~xn
T









~β = (β0, β1, ..., βp)
T

~ǫ = (ǫ1, ǫ2, ..., ǫn)
T .

For multiple regression the residual sum of squares becomes

n
∑

i=1

(Yi − ~xi
T ~β)2 = (~Y −X~β)T (~Y −X~β). (3.2)

However the relationship between our variables is not a straight line so
we must consider alternatives to linear regression. We will be using the
Expectation-Maximisation (EM) algorithm. The EM algorithm is used when
we can assume that the data comes from a multivariate distribution; in our
case this is the bivariate Poisson distribution. It allows us to compute max-
imum likelihoods given missing data; in our case this is results from other
seasons. The algorithm is an iterative process consisting of two steps:

1. The E-step, expectation.

2. The M-step, maximisation.

In the first step missing data are estimated given the observed data and the
parameters are estimated for the current state using the conditional expec-
tation. The second step maximises the likelihood function assuming that the
missing data are known using estimates from step 1. The algorithm guaran-
tees convergence as the likelihood increases with each iteration. If we were
estimating θ then at the ith iteration the current estimate would be θi.
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3.2 The Model

To predict the number of goals in a football match we will be using the
bivariate Poisson distribution as described in section 2.4, where X is the
number of goals scored by the home team and Y is the number of goals
scored by the away team in a single match. Given a single match with team
i playing at home and team j playing away we fit the model proposed by
Karlis and Ntzoufras, (2003):

(X, Y ) ∼ BV P (λ1, λ2, λ3)

where

log (λ1) = µ+ (attacki) + (defencej) + (home effect)

log (λ2) = µ+ (attackj) + (defencei) (3.3)

µ is the mean level of goals scored, attack and defence are the attack and
defence parameters for a specific team and home effect is the advantage of
playing at home. We will address the problems of obtaining these attack and
defence parameters later. Note λ3 is determined using “Bivpois.”

3.3 The Premier League

The Premier League was established in 1992 and is the most watched football
league in the world. To date only four teams have won the Premier League,
Manchester United (11 times), Arsenal (3 times), Chelsea (3 times) and
Blackburn Rovers (once). The league itself consists of 20 teams who over
a season play every other team both home and away; therefore every team
plays 38 games, meaning a season compromises of 380 fixtures. Every year
the bottom three teams are relegated to be replaced by three teams from the
lower division, and the top teams (or cup winners) are entered into European
competition.

If a team wins a game, meaning they score more goals than their opponents,
they are awarded 3 points; if the game is drawn, i.e. both teams score the
same number of goals, then both teams are awarded 1 point. At the end
of the season the team with the most points wins. If the points are the
same between two teams then goal difference is used to separate them. Goal
difference is the number of goals scored by a team minus the number of goals
conceded. The team with the greater goal difference occupies the higher
position in the league. If the goal difference is the same then the number
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of goals scored is used to separate them. If the number of goals scored is
also the same then a playoff at a neutral venue is organised between the two
teams to see who will occupy the higher position, if the position matters,
i.e. to determine who wins the league, who gets relegated or who plays in
Europe; this has never happened in the history of the Premier League.

3.4 The Home Effect

We now consider the question of whether there is a home effect in the Premier
League. Table (3.1) shows the points scored at home by every team over
the 2009/2010 Premier League season, a team can obtain a maximum of 57
points.

Team Points at home Team Points at home
Chelsea 51 Aston Villa 24

Man United 48 Birmingham 24
Arsenal 45 Burnley 21

Tottenham 42 Stoke 21
Liverpool 39 West Ham 21
Man City 36 Bolton 18
Everton 33 Hull 18
Fulham 33 Wigan 18

Blackburn 30 Portsmouth 15
Sunderland 27 Wolves 15

Table 3.1: Home points over the 2009/2010 season.

It is clear that the better teams, i.e. Chelsea obtain more points at home
than the poorer teams, i.e. Wolves; this however gives no indication of a
home effect, only that some teams are better than others. Consider Fulham,
who got 33 of their 46 points at home, or Sunderland who got 27 of their
44 points at home. Both these teams got a large proportion of their points
at home, and it was ultimately their home form that kept both these teams
safely in the Premier league. On the evidence of these two teams it is clear
that there is a home effect in the Premier League and it is needed in our
model. The home effect is calculated directly using “Bivpois.”
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3.5 Attack and Defence Parameters

We now look at how we obtain the estimates for the attack and defence
parameters in our model. We will obtain these estimates using regression
techniques described above, but we must consider how long a time period we
use. It is excessive to use all the results from the Premier League’s history
as teams are relegated and promoted over time, and squads change, meaning
that a team which was very good 10 years ago may not necessarily be good
today, and thus our estimates may be distorted.

We believe it is a reasonable starting place to use a season’s worth of results
when trying to predict the final table. Doing this gives a reasonable estimate
of how a team performs over the entire season; any periods of increased or
decreased attack and defence are averaged out and as such the final esti-
mates give the average rate for a team over that season. This method has
advantages in the fact that it is reasonably quick to carry out so we can easily
perform a lot of simulations. However it doesn’t really capture a team’s form.
To elucidate, Hull in 2008/2009 got off to a great start and found themselves
high in the table; however they barely won a game from November onwards
and only avoided relegation by a single point. The question is, “How do we
get our model to replicate this behaviour?”

One method is to have a dynamic model and use smaller time periods, thus
creating a moving average estimate for the parameters. We observe the first
100 games (roughly 10 weeks) and assume over this period teams are trying
to integrate players into their squads and are generally finding their feet in
the league, and as such may be slightly erratic in their performances. When
simulating we will use the previous seasons estimates for these games, making
sensible judgments to replace those relegated by those promoted. We then
obtain estimates using these 100 games, after which we will move forward
one time step and again use 100 games to gain new estimates. There are
several options for the length of the time step; 10 games (roughly a weekly
time step), 20 games (roughly a 2 week time step) or 40 games (roughly a
monthly time step). We have calculated the estimates using all 3 time steps
and plotted the results. Figure (3.1) shows the plots of the attack parameters.
You can see that all the time steps keep the general shape with a time step of
10 having the most interference and a time step of 40 being the most smooth.
A time step of 20 models the changes in the parameters well without being
too smooth, and as it will be quicker to simulate than a time step of 10 we
will use this when simulating using a moving average. The results of using a
whole seasons results or the alternative of a time step can be seen in chapter
4.
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Figure 3.1: Attack parameters using different time steps.
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3.6 Simulating Results

We now have 2 methods from which we can simulate; however we must
consider what further conditions to use. We must first determine the range
of results we should simulate from. We use “Bivpois” and the command
bivpois.table to determine this. The 2009/2010 Premier League season
had a home goals mean of 1.697 and an away goals mean of 1.074; we set
λ1 and λ2 to be these values respectively and λ3 = 0.137. Looking at the
probabilities up to 8-8 under these conditions we see that they total 0.999;
it therefore seems reasonable to simulate from results up to 8-8. It is also
reasonable to assume that an 8-0 is the same as a 10-0 in the long run, and
as such the higher scores can be discounted.

We must also consider the order of games we simulate from. For the method
using estimates from the whole season this is not important as the estimate
never change and games can take place in an order most convenient for
simulation. The order is a problem though when using the method based on
the moving average estimates. As the estimates change over time we require
the games to be simulated in the same order that they occurred in the real
season; this is so that any changes in form will be replicated in our results.In
theory this should give more accurate results and therefore a more accurate
representation of the Premier league.

We simulate results by generating probabilities using pbivpois, with the λ’s
being determined by equation (3.3) and our attack and defence estimates.
We number the match results 1-81, and by sampling from 1-81 with each
number having the pbivpois probabilities we gain an accurate result for
each match. Converting the sampled numbers to scores and including the
involved teams we have a full set of results for a season, from which we can
determine the final league table, as well as look at results between specific
teams.



Chapter 4

Results

We now consider the two methods described in chapter 3 and discuss issues
with the home effect. During this chapter I will use the following to represent
the teams in the Premier League:

Team Code Team Code Team Code
Arsenal ARS Everton EVE Stoke STO

Aston Villa AST Fulham FUL Sunderland SUN
Birmingham BIR Hull HUL Tottenham TOT
Blackburn BLR Liverpool LIV West Ham WES
Bolton BOL Man City MNC Wigan WIG
Burnley BUR Man United MNU Wolves WOL
Chelsea CHE Portsmouth POR

4.1 Method 1: Season Estimates

First we shall consider the method which uses the whole season to obtain its
estimates. We begin by plotting the attack parameters against the defence
parameters for each team.

Figure (4.1) shows attack plotted against minus defence so that the higher
the value, the better a team’s attack and defence is. Thus we see that CHE
(17) and MNU (5), who were the title contenders, occupy the top right corner
with the higher values; it can be argued that the greater attack parameter of
CHE is what won them the league despite having a worse defence than MNU.
Conversely the teams involved in the relegation battle occupy the bottom left
corner, that is HUL (2), POR (6), WIG (11) and BUR (16); while a greater
attack won CHE the league it is possible that the slightly greater defence of

27
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WIG in relation to BUR is what kept them in the league. FUL (19), BIR
(13) and STO (7) are of particular interest as they have very poor attack
parameters but relatively good defensive parameters. All these teams who
arguably started the season with the view of staying in the league finished
safely mid-table which suggests that a greater defence is better than a greater
attack when trying to stay in the Premier League.
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Figure 4.1: Attack against defence.

We are able to simulate this model in R. Table (4.1) shows the final table
of results based on 100 simulations of the 2009/2010 Premier League. We
have taken the means so that the table reflects an average season. The
simulated table is very close to the 2009/2010 Premier League table; teams
at the top using our simulations are the teams at the top of the Premier
League, and similarly for teams found at the bottom of the league. There
are some discrepancies of order around the middle of the table but this is
mainly due to how similar some teams are. Our simulations suggest that
LIV dramatically underperformed over the season and a 7th place finish was
a poor result. Looking at the number of goals scored and conceded we see
that this method appears to have captured the rate at which teams attack
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and defend. A team’s average goals scored and conceded in the simulated
table is reasonably accurate when compared with the actual Premier League.
The model seems to inflate the number of goals over a season slightly meaning
that if we used it to predict scores then we would expect more goals than we
would observe; this suggests that this model is a good predictor of results
but perhaps not perfect scores.

Team Points Games Won Games Drawn Goals Conc Goaldif
Chelsea 90.5 28.44 5.18 111.54 36.86 74.68

Man United 88.4 27.37 6.29 95.82 31.34 64.48
Arsenal 78.35 23.97 6.44 91.29 44.72 46.57
Liverpool 71.23 20.89 8.56 67.32 39.29 28.03
Tottenham 71.1 20.99 8.13 75.63 45.96 29.67
Man City 70.14 20.78 7.8 77.08 48.16 28.92
Aston Villa 63.78 718.11 9.45 58.4 42.59 15.81
Everton 61.78 17.9 8.08 66.24 52.19 14.05

Sunderland 48.78 13.27 8.97 52.12 60.72 -8.6
Fulham 48.07 12.62 10.21 44.46 50.48 -6.02

Birmingham 46.46 12.05 10.31 41.58 51.14 -9.56
Blackburn 42.86 11.37 8.75 45.46 60.97 -15.51
West Ham 42.8 11.57 8.09 53.12 71.32 -18.2

Stoke 41.31 10.42 10.05 36.95 54.48 -17.53
Bolton 38.3 9.92 8.54 46.85 73.6 -26.75
Wolves 35.06 8.43 9.77 33.72 60.83 -27.11
Burnley 31.81 8.2 7.03 46.48 89.14 -42.66

Portsmouth 30.91 7.48 8.47 36.99 73.89 -36.9
Wigan 27.92 6.82 7.46 40.95 87.65 -46.7
Hull 27.65 6.55 8 36.28 82.95 -46.67

Table 4.1: The Premier League based on 100 simulations.

Figure (4.2) shows box plots representing the final points for each team over
100 simulated seasons. They have been ordered to represent the final standing
of the league table based on 100 simulated seasons obtained above. CHE and
MNU have very similar box plots and this mirrors how close they were in
the Premier League, (they were separated by 1 point). CHE and MNU both
occupy the top numbers and there is a difference to ARS in 3rd. LIV, TOT
and MNC all have very similar boxplots representing the fight for 4th; any
one of these teams could have occupied this position and TOT perhaps did
because of the slightly longer tails, although LIV had a poorer season and
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finished 7th. AST and EVE are also very similar and this shows the struggle
for the last European place. AST eventually got it but EVE only missed out
by 1 point showing how similar these teams are. All the box plots from SUN
to HUL overlap significantly and it was considered at some point during the
season that any of these teams could be relegated. The teams to the left
of this group pulled away from those to the right as the season went on
and this is most likely due to their higher means. Looking at BUR, POR,
WIG and HUL we see that there is very little between them. BUR may
count themselves slightly unlucky to be relegated given they have a higher
mean than WIG, but it is too close to really call, showing how unpredictable
the Premier League really is. POR have a much higher mean and finishing
position using the simulations compared to the actual Premier League but
this is due to them being docked 9 points for entering administration which
our model does not account for.
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Figure 4.2: Box plots of 100 simulated seasons.

From the box plots it appears that some teams are very similar in nature.
W1‘e will now look at these teams and investigate the home effect between
them. For the 2009/2010 Premier League the home effect over the entire
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season was 0.787, the mean number of home goals was 1.697 and the mean
away goals was 1.074; the probability of a home win was 0.508, an away win
0.240, with a draw 0.253. Looking at the box plots and the final points from
the simulations we begin by considering the teams EVE to WOL. The pa-
rameter estimates change slightly as they need to sum to zero, but the rough
ordering stays the same with the better teams having the better parameters;
this holds whichever teams are used. Using only the results between these
9 teams we see that the home effect is 0.384, a big decrease from the entire
season; however the mean home goals has decreased to 1.458 and the mean
away goals has decreased to 0.917. From this we conclude that even though
the home effect is less it has a bigger effect overall as the mean number of
goals has decreased. The probability of a draw has increased to 0.333 re-
flecting how similar these teams are, and the probability of an away win is
now 0.181, adding further evidence that the home effect has more importance
between these 9 teams than it does over the entire league.

Removing WOL and considering the teams EVE to BOL we find that the
home effect is 0.415, the mean home goals is 1.482, the mean away goals is
0.875, the probability of a home win is 0.5 and the probability of an away
win is 0.179. Removing WOL has increased the home effect between the 8
teams; the decreased mean away goals also implies that the home effect has
more impetus here than it did before. We still have a high proportion of
draws but the increase in home wins clearly shows that these teams tend to
win at home and struggle more with the away games, thus there is a greater
home effect between them.

Finally if we remove EVE and consider SUN to BOL the home effect is 0.402,
the mean home goals is 1.405 and the mean away goals has decreased to 0.786;
the probability of a home win is 0.524, a draw 0.286 and an away win 0.190.
The proportion of results between these 7 teams most accurately reflects the
Premier League but there is still a reduced number of away wins; there is a
significant increase in the number of home wins adding to the evidence for an
increased home effect between these teams. With the mean number of away
goals decreasing again this lower home effect does in fact have the bigger
impact on results. From these investigations we can conclude that although
the home effect decreases in the middle of the Premier League there is in fact
a greater home effect between the teams involved.
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4.2 Method 2: Moving Average Estimates

Figure (4.3) shows a moving average of the attack parameters obtained using
increments of 20. The left graph shows this for all teams and the right shows
specifically CHE, MNU and BUR. When looking at the left graph we see that
the right half has more variation than the left. This is due to the January
transfer window; this window is regarded as expensive and so only the better
clubs with more money can buy new players, meaning that the better teams
get better whilst some of the poorer teams loose their key players. From the
right graph we can clearly see that the better teams are higher up and have
the higher averages over the season; a team’s average is denoted by the line
and the order of these averages is very similar to the order of the final table of
the Premier League. We see that CHE and MNU are fairly similar over the
season; CHE dip slightly around 8, which was during January when they lost
their leading striker Didier Drogba to the African Cup of Nations and they
did not score as many goals. They increase dramatically at the end when
they won games 7-0, 7-1 and 8-0. This was because the league was extremely
close and CHE needed to win every game to ensure they won the league; they
did this by ensuring they scored goals. BUR at the other end of the league
started well and had a famous win over MNU; however results started to slip
and their manager left to join another club. It took the new manager a while
to turn things around and they never really succeeded. They increase at the
end when they were facing relegation; they had to win all the games they
could and as such had to score more goals.

Figure (4.4) shows the defence parameters for the same conditions as above;
note that there is not as much variation here compared to the attack param-
eters and the transfer window does not have the same effect. This is most
likely due to the fact that defending is a team aspect whereas goals are scored
by individuals; hence it is easier to replace a good defender in a team than it
is a good attacker. There are increases around 6 and 11 for nearly all teams,
this is because the parameters sum to 0. Considering the right graph we see
that the averages roughly follow the ordering of the Premier League just as in
the case of the attack parameters. CHE and MNU are again roughly similar
apart from around 11; this was due to CHE loosing their first choice keeper
to injury and their reserve keeper struggled to keep clean sheets. BUR have
a worse defence but they are reasonably consistent until the end where they
start to concede more goals; this is due to the fact that they needed to score
goals and in committing men to attack they ultimately left themselves open
at the back.
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Figure 4.3: Moving average of the attack parameters.



CHAPTER 4. RESULTS 34

2 4 6 8 10 12 14

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Defence Parameter throughout the Season

Index

D
ef

en
ce

 P
ar

am
et

er

2 4 6 8 10 12 14

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Defence Parameter throughout the Season

Index

D
ef

en
ce

 P
ar

am
et

er

Chelsea
Man U
Burnley

Figure 4.4: Moving average of the defence parameters.
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Using these changing estimates we can again simulate the 2009/2010 Premier
League. Table (4.2) shows the final table of results based on 100 simulations,
again we have taken the means. We see that this method does not capture the
final order of the Premier League very well, but it does retain the impression
of the teams involved at the top and bottom. The table shows an increased
number of goals over the Premier League, specifically for the teams in the
bottom half. We find that the probability of a home win is 0.426, an away win
0.396 and a draw 0.178. Thus we see a higher than average number of away
wins, suggesting that the home effect is underestimated. This discrepancy
with the home effect is most likely the reason why the ordering is inaccurate,
and why the teams towards the bottom the Premier League appear to score
too many goals.

Team Points Goals Conc Goaldif
Man United 70.96 105.82 53.71 52.11
Tottenham 69.13 97.84 57.77 40.07
Aston Villa 67.38 80.01 52.57 27.44
Chelsea 65.52 105.42 64.55 40.87
Arsenal 65.25 106.40 68.36 38.04
Man City 62.84 99.48 78.67 20.81
Everton 61.89 87.26 65.29 21.97
Liverpool 60.38 82.75 61.85 20.90
Blackburn 55.63 74.14 75.38 -1.24
Birmingham 54.24 63.10 68.24 -5.14

Stoke 49.95 58.55 66.68 -8.13
Bolton 49.81 78.56 90.26 -11.70

Sunderland 45.75 67.37 85.41 -18.04
Fulham 45.60 53.36 64.22 -10.86

West Ham 44.20 68.38 92.36 -23.98
Wolves 42.64 55.73 84.46 -28.73
Hull 41.24 62.06 104.31 -42.25

Portsmouth 40.54 58.44 90.95 -32.51
Burnley 40.34 65.06 105.95 -40.89
Wigan 39.12 54.94 93.68 -38.74

Table 4.2: The Premier League based on 100 simulations using moving av-
erage estimates.

Figure (4.5) shows a moving average for the home effect over the season us-
ing a time step of 20. The red line shows the home effect we obtained when
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using the whole season to gain our estimates. We see that the moving aver-
age changes greatly throughout the season, often with big changes between 2
consecutive time steps. We see that for most of the time the moving average
is below the home effect obtained using the whole season. This is why we
have a reduced home effect for this model and why we have a high number
of away wins. This suggests that although this method takes into account a
team’s form throughout the season, the lack of accuracy when working out
the home effect leads to a decreased home effect within the model. This
means we see a high proportion of away wins over a season and as such our
final results are not that accurate.
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Figure 4.5: Moving average of the home effect.
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4.3 A “Real” Life Example

The simulation of football matches does not just take place in a betting
context; many video games use the principle, for example Fifa, Pro Evolution
Soccer and Football Manager. Here we will take a look at Football Manager
2011 and examine how it simulates matches. Football Manager is a PC game
developed by Sega and Sports Interactive. You manage a team controlling
the transfers, tactics, finances etc. with the aim of winning matches. Most
aspects are controlled by the player and can be changed at any time to effect
a result. We note that Football Manager simulates depending on players,
not teams; this means that players have a greater effect on the result and if
we transfered the MNU players to WOL we would find that WOL started
winning the Premier League - not a very realistic outcome.

To simulate a season in the game you need to manage a team. We there-
fore chose to manage Torquay United (League 2) and resigned on the first
day. We chose Torquay as we believed it didn’t matter who the manager of
the League 2 side was, and it would have no effect on the final outcome of
the Premier League. Note the simulations include the transfer windows and
teams have budgets reflecting reality, with MNC having unlimited funds and
WOL running on a shoestring. By going on holiday we were able to simu-
late the entire season without any influence. Table (4.2) shows the average
points for the Premier League based on 20 Football Manager simulations.
The simulations include the teams Newcastle (NCL), West Brom (WBR)
and Blackpool (BPL) instead of POR, BUR and HUL who were relegated in
the 2009/2010 season. We believe the new teams are similar to the relegated
ones allowing us to compare the results. We first note that the ordering is
roughly similar with MNU and CHE at the top with very little between them.
These simulations however seem to place MNC lower down the table; this is
perhaps because the makers of the game did not account for their continued
rise and spending power. Football Manager also appears to capture how close
the teams in the middle of the Premier league are with very little between
their average points. The top teams have lower average points; this may be
down to the player element in the simulation with certain players able to win
games for lower teams which they should perhaps not win; it could also be
because Football Manager doesn’t appear to account for a home effect.
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Team Points
Man Utd 73.95
Chelsea 70.25
Arsenal 69.05

Tottenham 63.4
Liverpool 61.55
Everton 54.25
Man City 54.2
Aston Villa 52.35
Fulham 50.45
Stoke 48.6

Sunderland 45.8
Bolton 44.25

Birmingham 44.1
Wolves 43.6

Blackburn 42.9
West Ham 40.85
Newcastle 39.4
Wigan 34.3

West Brom 33.3
Blackpool 30

Table 4.3: The Premier League based on Football Manager 2011 simulations

If we consider one average simulated season we see that the probability of a
home win is 0.413, an away win 0.35 and a draw 0.237. The probability of an
away win is very high, with most of this increase taken from the home wins;
this suggests that Football Manager does not account for a home effect, or
if it does, it does not give a large enough advantage to the home team. The
probability of a draw is reasonably accurate and it appears that Football
Manager simulates these well. If we also consider the goals scored over the
season we find that scores tend to be lower than we would expect, with fewer
extreme results; this could also be down to the lack of a home effect with the
home teams not scoring as many goals as they should do.

Football Manager therefore simulates with reasonable accuracy when looking
at the end results but perhaps there are too many factors when considering
the accuracy of individual results, with lower scores overall and no obvious
home effect to help model results accurately.
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Conclusion

By considering properties of univariate and bivariate distributions, specifi-
cally those involving generating functions, we arrived at the bivariate Poisson
distribution and looked at some of its properties. We used this distribution
and the model proposed by Karlis and Ntzoufras, (2003) to predict football
matches. We looked at the home effect in the Premier League and why it
is needed in our model. We also considered how we obtain our attack and
defence parameter estimates and the problems involved when choosing them.

We considered two methods for predicting matches; one where we took esti-
mates over the whole season, and the other where we established a moving
average. Under the first method we observed the slight differences in attack
or defence which can win a team the league or cause them to get relegated.
We also gained an understanding of the similarities and differences between
teams from their attack and defence parameters.

We simulated the first method in R and produced an average final league
table for the 2009/2010 Premier League. From the table we gained an un-
derstanding of how accurate this method was. It appears that this method is
reasonably accurate when considering the final ordering of teams; it captures
the teams at the top and bottom well and reflects how similar the teams in
the middle are. This method slightly inflates the number of goals scored by
a team and because of this we see an increase in higher scores over a season.
This means that this method is good for predicting results in a general sense;
that is, it can predict which team will win a game; we expect this generality
as we are using estimates based on an entire season, and as such they are the
most general estimates. Over a long period this method gives an accurate
feel for what is occurring but it is not so good for specific match scores; this
is because the result will have an increased number of goals in it.

39
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By considering box plots of 100 simulated seasons we were able to see the
differences between certain teams and we learned how similar some teams
are, specifically those in the middle of the Premier League. We decided to
take these teams and investigate the home effect between them. We found
that amongst these teams, even though the numbers went down, there was in
fact a greater home effect between them. This was most notable between the
teams of Sunderland to Bolton where over half the games were won by the
home team, with only 19% of games won by the away team. This means that
the matches between these teams over a simulated season are not accurately
represented as there are likely to be too many away wins. We could alter this
method slightly by incorporating different rates of the home effect between
certain teams to help rectify this problem.

Using the second method we looked at estimates for the attack and defence
parameters which changed over time. We saw that the attack parameters
had more variation than the defence parameters, leading us to believe that
attacking is affected by the transfer window, whereas the team elements of
defending mean that it is less effected. From this we concluded that it is
easier to replace good defenders than good attackers. We saw that these
changing estimates tell the story of the season reasonably well; the way they
changed over time gave a good indication of a team’s form throughout the
season.

We again simulated this method in R, we found that this method is not as
accurate and this appeared mainly down to the home effect. We saw that it
had a changing home effect over the season which was generally too small; as
such we saw an increased number of away wins and a high number of goals
for the teams at the bottom of the Premier League, with teams scoring too
many goals away from home.

We have also considered how Football Manager 2011 simulates football matches.
We found that the game captured the final standings of the Premier League
reasonably well; like the method based on season estimates we saw that it
captured the general ordering of the league. There were some discrepancies
with the ordering, with Manchester City for example being rather low in the
league; this could be down to how the game was programmed or because the
game appears to simulate using players rather than teams. Teams at the top
of the league appeared to have a slightly lower points total than we expected
and when we examined a season’s results we found that the probability of
an away win was 0.35. This is high compared with the 2009/2010 Premier
League and shows that Football Manager does not include a home effect when
simulating, or if it does, it is not as great as it should be. This decreased
home effect means that we observed too many away wins and some teams
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won away games which they possibly should not have won. The number of
goals over a season was a little low and we did not observe as many extreme
results as we possibly should have. This lack of goals is possibly down to the
lack of a home effect, with home teams not scoring as many goals as they
should do. Therefore Football Manager simulates the final results reasonably
well but is not so good when considering specific match results.

If we had more time then we could consider how to change the home effect
in the second method to make the results more accurate. This would in-
corporate a more accurate home effect and the form of each team into the
model, which should in theory give us more accurate results. We could also
consider different or more complicated models to see if we can improve the
way in which we simulate football matches. Finally we could consider the
home effect between the teams in the middle of the Premier League and look
to incorporate that into our model. This would mean that we would have
more accurate results between these specific teams; this idea could also be
extended to include an individual home effect for every team.

Throughout this project we have looked at various ways to simulate foot-
ball matches. Considering the results we have observed it appears we are
able to simulate an entire season reasonably accurately; we can capture its
final standings and model its general trends, such as a team’s points or goals
scored. The problems arise when we consider a specific match. We can pre-
dict the match result but it is more difficult to obtain an accurate scoreline.
The methods we have looked at tend to overestimate the number of goals,
whereas other people’s methods (Football Manager) tend to underestimate
due to the lack of a home effect. Also there is a lot of uncertainty in the
outcome of a match as there are many variations of scorelines. All this un-
certainty shows that although we may be able to get a picture of the general
outcome, the specifics remain beyond us due to how unpredictable football
can be with its many outcomes and unexpected results.
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“They think it’s all over! It is now!”
Kenneth Wolstenholme, 1966


